
© Copyright 2008-9 YAMAHA CORPORATION
All rights reserved

Open Score Format

Packaging Specification

Version 1.0

Date: 15/9/2009

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 2 of 52

Revision History
Date Version Description Author

15/12/08 0.9 Public beta Mark Olleson, Yamaha R&D Centre
London

10/9/09 1,0 OSF 1.0 Mark Olleson, Yamaha R&D Centre
London

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 3 of 52

Acknowledgements
The following organizations have contributed to the development of the Open Score Format

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 4 of 52

License

Copyright (c) 2008-2009 Yamaha Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the Yamaha Corporation nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY YAMAHA CORPORATION ''AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL YAMAHA CORPORATION
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 5 of 52

Table of Contents
1. Introduction 7

1.1 Purpose 7
1.2 Scope 7
1.3 Intended Audience 7
1.4 Definitions, Acronyms and Abbreviations 7
1.5 Use of Requirements Levels 7
1.6 Conventions 7

1.6.1 Typographic Conventions 7
1.6.2 Schema Prefixes and Namespace URIs 8
1.6.3 Schema Locations 8

1.7 References 8
1.8 Overview 9

2. Open Score Format Design Philosophy 10
2.1 Introduction 10
2.2 Open Score Format Base-line Profile 10
2.3 Digital Score Application Profiles 10
2.4 Use of Existing Open Standards 10
2.5 Extensibility 11
2.6 Expectations of Interoperability 11

3. Packaging 12
3.1 Introduction 12
3.2 Renditions 12
3.3 Package Format 13

3.3.1 Package Metadata Files 13
3.3.2 Use of ZIP 14

3.4 Use of XML 14
3.5 Open Score Format Internet Media (Formerly MIME) Type Identifiers 14
3.6 Use of Internationalized Resource Identifiers (IRIs) 15
3.7 META-INF/container.xml file 15
3.8 META-INF/manifest.xml file 15

3.8.1 Declaration of Assets and Asset-Groups 16

4. Package Signing 18
4.1 Introduction 18
4.2 Keys Used for Signing 19
4.3 Inclusion of Signature Data in META-INF/manifest.xml 19

4.3.1 Inclusion of Message Digests Values for Assets Under a ds:Signature
Element 19
4.3.2 Specifying the Signature and Canonicalization Algorithm to be Applied to a
ds:Signature Element 20
4.3.3 Inclusion of a Message Digest for META-INF/manifest.xml 20
4.3.4 Signature Value 21

4.4 Including a X.509 Certificate in META-INF/manifest.xml 21
4.5 Sequence of Operations for Signing a Package 21
4.6 Validating the Signature on a Package 22

5. Metadata 23
5.1 Introduction 23
5.2 Open Score Format Base-line Metadata Profile 23
5.3 Design Objectives 23

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 6 of 52

5.4 The META-INF/metadata.xml file 24
5.5 Metadata Encodings 25

5.5.1 Introduction 25
5.5.2 Specifying Element Encodings 25
5.5.3 Uniform Resource Identifiers 25
5.5.4 W3C Time and Date Format 26
5.5.5 DCMI Period 26

5.6 Language Variants 26
5.7 Recommended use of Dublin Core Metadata Terms 26

5.7.1 dc:title 26
5.7.2 dc:creator 27
5.7.3 dc:description 27
5.7.4 dc:publisher 27
5.7.5 dc:created 27
5.7.6 dc:issued (OPTIONAL) 27
5.7.7 dc:modified 27
5.7.8 dc:valid 27
5.7.9 dc:dateCopyrighted 27
5.7.10 dc:type 27
5.7.11 dcterms:medium 27
5.7.12 dc:identifier 28
5.7.13 dc:source 28
5.7.14 dc:language 28
5.7.15 dc:relation 28
5.7.16 dc:rights 28

5.8 Use of OSF Metadata Terms 28
5.8.1 osfmeta:meter 28
5.8.2 osfmeta:key 29
5.8.3 osfmeta:work-number 29

5.9 Addition of Application-specific Metadata to META-INF/metadata.xml 29
5.9.1 Example of an application-specific data schema 29

6. Open Score Format Packaging Tool 31

7. Appendix 32
7.1 META-INF/container.xml W3C XML Schema 32
7.2 META-INF/manifest.xml W3C XML Schema 35
7.3 META-INF/metadata.xml W3C XML Schema 40
7.4 Example META-INF/manifest.xml with a digital signature 44
7.5 Open Score Format Base-line Metadata Profile Dublin Core Element requirement
levels 49
7.6 Comparison of validation capabilities of Metadata XML Schema and OSF
Validation Tool 52

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 7 of 52

Open Score Format - Packaging Specification
1. Introduction

1.1 Purpose
This document specifies the format of Open Score Format packages and their associated
metadata.

1.2 Scope
The Open Score Format is an open and non-proprietary file format for digital scores and
associated media objects and metadata. The Open Score Format is intended to be used for
delivering digital scores to end users, as an interchange format between applications that
create or use digital scores and for archive purposes.

Digital score content in an Open Score Format package is represented in MusicXML.
Restricted subsets of MusicXML permitted for particular types of content types are called
application profiles. The initial version of the Open Score Format contains a single profile for
PVG content. This is defined by the Open Score Format PVG Application Profile [10].

This document defines the layout of the Open Score Format packages and associated
metadata, the catalogue metadata for the work contained within the package and the manner
in which packages contents can be digitally signed.

1.3 Intended Audience
This document is primarily intended for developers of music application software that creates,
manipulates, displays or sells digital score content.

1.4 Definitions, Acronyms and Abbreviations
• Open Score Format Application: An application that is capable of reading, writing

or otherwise processing Open Score Format packages.

• Open Score Format Package: A single file system object that contains all of the
necessary data and metadata associated with one or more renditions of a digital
score.

• PVG: Piano Voice Guitar (for musical score)

1.5 Use of Requirements Levels
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [11].

1.6 Conventions

1.6.1 Typographic Conventions
Fragments of XML and file-paths appear in a blue mono-spaced type-face:

• XML fragment: <dc:title>

• File-path: META-INF/Manifest.xml

Multi-line XML excepts appear with a grey background and syntax-highlighted text:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 8 of 52

1.6.2 Schema Prefixes and Namespace URIs
Prefix Schema Namespace URI

osfm Manifest http://openscoreformat.sourceforge.net/osf/manifest

osfmeta Metadata http://openscoreformat.sourceforge.net/osf/metadata

dc Simple
Dublin Core

http://purl.org/dc/elements/1.1/

dcterms Qualified
Dublin Core

http://purl.org/dc/terms/

ds XML-SIG
digital
signatures

http://www.w3.org/2000/09/xmldsig#

Table 1: XML Namespaces and prefixes used in this document

1.6.3 Schema Locations
Prefix Schema Schema Document URI

osfm Manifest http://openscoreformat.sourceforge.net/1.0/manifest.xs
d

osfmeta Metadata http://openscoreformat.sourceforge.net/1.0/metadata.xs
d

<none>1 Container http://www.musicxml.org/xsd/container.xsd

dc Simple
Dublin Core

http://dublincore.org/schemas/xmls/qdc/2008/02/11/dc.x
sd

dcterms Qualified
Dublin Core

http://dublincore.org/schemas/xmls/qdc/2008/02/11/dcte
rms.xsd

<none>2 OSF PVG
Application
Profile

http://www.musicxml.org/xsd/osfpvg.xsd

<none> MusicXML
2.0 Strict

http://www.musicxml.org/xsd/musicxml.xsd

Table 2: Location of W3C XML Schemas used in this document

1.7 References
[1] OEBPS Container Format 1.0

[2] Dublin Core

[3] Resource Description Framework

[4] RFC2048: Multipurpose Internet Mail Extensions (MIME) Part 2: Media Types

[5] Resource Description Framework (RDF)

[6] RDF/XML Syntax Specification (Revised).

1 The container.xsd schema has no namespace for backward compatibility with MusicXML containers which have a file

with the same name and content model.
2 The osfpvg.xsd schema has no namespace due to it being derived from the MusicXML Strict 2.0 Schema – which in

turn has historically not used namespaces due to forward- and backwards-compatibility requirements

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 9 of 52

[7] RFC3987: Internationalized Resource Identifiers (IRIs)

[8] ZIP File Format Specification v6.3.2

[9] XML Signature Syntax and Processing Specification (Second Edition)

[10] Open Score Format PVG Application Profile Specification[11] RFC2119: Keywords for
use in RFCs to indicate requirements levels

[12] XML 1.1 Extensible Markup Specification

[13] Dublin Core Metadata Initiative: Dublin Core Qualifiers

[14] RFC4646: Tags for Identification of Languages

[15] RFC2141: Uniform Resource Name Syntax

[16] RFC3187: Using International Standard Book Numbers as Uniform Resource Names

[17] RFC4122: A Universally Unique Identifier (UUID) URN Namespace

[18] W3C Note: Date and Time Formats

[19] DCMI Period Encoding Scheme: specification of the limits of a time interval, and methods
for encoding this in a text string

[20] Dublin Core Metadata Initiative: Using Dublin Core – The elements

1.8 Overview
The remainder of the document is structured as follows:

• Section 2 describes the design philosophy of the Open Score Format

• Section 3 defines the format of the package and its contents

• Section 4 describes how to digital sign packages

• Section 5 describes the use of metadata in Open Score Format packages

• Section 6 describes the OSF Package Validation Tool

• Section 7 is the appendix

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 10 of 52

2. Open Score Format Design Philosophy

2.1 Introduction
The objective of the Open Score Format is to provide an open and non-proprietary file format
for digital scores and their associated metadata that allows reliable interchange between
applications. The openness of the file format is significant as data often outlives the
applications that creates it.

The Open Score Format base-line profile defines minimum requirements for interoperability.

2.2 Open Score Format Base-line Profile
The Open Score Format base-line profile defines the following:

• A standardized container file format for scores, associated media objects and
metadata

• A specification of the minimum amount of catalogue metadata required for describing
the package - the Open Score Format Base-line metadata profile

• A subset of MusicXML used to represent the digital score

Digital scores in an Open Score Format package conform to one of a number of Digital Score
Application Profiles.

2.3 Digital Score Application Profiles
MusicXML allows a considerable degree of flexibility to accommodate almost any type of
score annotation and practice commonly used in Western European tradition scores. Building
and testing tools to accommodate all of these features is a daunting task.

The Open Score Format uses Digital Score Application Profiles to define a subset of
MusicXML score elements and features that are required for a particular genre of score. The
result is a reduction in the effort required to implement and test software that makes use of
these scores.

The first release of the Open Score Format specification introduces a single Digital Score
Application Profile for PVG content – the most prominent commercial content type. It is
envisaged that additional profiles could be added at a later date.

2.4 Use of Existing Open Standards
The design of the Open Score Format Packaging Specification has made use of existing
open standards and specifications for content packaging and metadata where practical:

• The Open Score Format Packages Specification draws upon elements of the OEBPS
Container Format (OCF) specification [1]. OCF is a packaging format for eBooks.

This package layout is a superset of that employed by MusicXML 2.0 for its container
format. This means that software that understands MusicXML 2.0 containers should
also be capable of reading Open Score Format packages, although MusicXML 2.0
containers are not valid Open Score Format packages.

• The Dublin Core [2] is used as the basis of the metadata vocabulary in Open Score
Format. The Dublin Core is a standardized vocabulary for describing resources’
catalogue data. It is widely used for hard-goods such as books as well as for digital
resources such as video and audio.

• XML is used throughout for metadata files. XML is inherently extensible.

• The XML Signature Syntax and Processing Specification [9] is used to implement
package signing.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 11 of 52

2.5 Extensibility
The Open Score Format is purposefully designed to provide opportunity for extensibility:

• Open Score Format packages MAY contain multiple, application-specific renditions of
content. These can be used either to enhance the default rendition or provide an
alternate rendition. The use of renditions is described in §3.2

• The Open Score Format Base-line Metadata Profile provides an extension
mechanism that allows particular applications to add application-specific data to that
which is already included in the package

2.6 Expectations of Interoperability
Whilst the Open Score Format is designed to allow extensibility, it is important that packages
remain interoperable with all Open Score Format reading applications.

Where an extension is used, the package MUST provide base-line functionality to
applications that understand the Open Score Format base-line profile.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 12 of 52

3. Packaging

3.1 Introduction
An Open Score Format package is a container for digital scores, media objects such as audio
or video associated with the score and metadata. It MUST contain precisely one content title
that can be represented using a single MusicXML score file.

Examples of a single content title include:

• A song-sheet for a single song

• A single musical work with several smaller sub-parts such as a concerto with several
movements.

• A book of exercises or studies that are sold as a single unit.

• A method book comprising of score excerpts and instructional text.

An Open Score Format package SHOULD NOT include:

• Compendiums or collections of separate works – for instance a song-book containing
transcriptions of the tracks from a CD album.

Instead, separate Open Score Format packages should be used for each part and metadata
should be used to describe the relationship between them.

3.2 Renditions
An Open Score Format package MAY include multiple renditions of the content title.
Renditions allow the content title to be presented in multiple data formats or with
enhancements for particular applications.

In order to ensure that the expectations of interoperability between applications are met (see
§2.6), a default rendition of the score that complies with one of the digital score application
profiles MUST be provided.

Renditions provided in addition to the default rendition are called alternate renditions and their
use is OPTIONAL. Potential uses include:

• A pre-rendered edition of the score (for instance in PDF or Postscript) suitable for
high quality printing.

• Providing the original score engraving in the native file-format of the tool in which it
was originally engraved. This is particularly appropriate for archive applications.

• Supporting applications such as Yamaha’s Digital Music Notebook that provide an
enhancement of the score with additional media objects such as video, audio and
MIDI.

One or renditions MAY reference each object within a package.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 13 of 52

3.3 Package Format
An Open Score Format package is a ZIP file [4] containing the directory structure shown
below.

 Package

META-INF

Alternate
Rendition

manifest.xml

container.xml

metadata.xml

Score.xml

Figure 1: Directory structure of an Open Score Format Package

The diagram above shows high-level view of the items that appear in an Open Score Format
Package.

3.3.1 Package Metadata Files
The following files MUST be present:

• META-INF/container.xml: A description of the default rendition, and any alternate
renditions of the content available in the package. It describes the root location and
the Internet Media (MIME) Type [4] of each rendition. This file MUST NOT be
encrypted.

• META-INF/metadata.xml: A XML file containing the catalogue metadata for the
package and default rendition. Refer to §5.

The following files MAY be present:

• META-INF/manifest.xml: A description of all files in package including their size,
Internet Media (MIME) type and OPTIONAL information related to the digital
signature of the package

A manifest MUST be present if any of the following conditions is met:

• Any file in the package is digitally signed.

• Any particular rendition makes use of more than one media object – e.g. one
that is not referenced from the META-INF/container.xml file.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 14 of 52

• One or more folders containing files associated with alternate renditions.

3.3.2 Use of ZIP
The Open Score Format supports a subset of the ZIP format as described in Zip File Format
Specification [8]:

• Multi-volume ZIP files MUST NOT be used.

• Encryption mechanisms provided by the ZIP format MUST NOT be used; instead
mechanisms provided in Open Score Format Security Model Specification [9] MAY
be used.

• File system names within an OSF Package MUST be encoded in UTF8.

• The ZIP64 extensions MAY be used and MUST be supported by compliant Open
Score Format reading applications.

• The ZIP compression method MAY be either STORE (0) or DEFLATE (8). Other
compression methods MUST NOT be used.3

Compliant Open Score Format reading applications MUST reject as invalid ZIP files using the
following ZIP features:

• Archive Decryption Headers or Archive Extra Data Headers

• Multiple-volume archives

• Encryption Features

• Compression methods other than 0 (STORE) and 8 (DEFLATE)

3.4 Use of XML
XML1.0 is used throughout the Open Score Format:

• The package’s container.xml, metadata.xml and manifest.xml files

• Package metadata

• Score (MusicXML)

A W3C XML Schema is provided for each of these document types.

All XML files within an Open Score Format package MUST:

• Be well-formed

• Contain a processing instruction that references the appropriate schema

• Validate against the appropriate schema

3.5 Open Score Format Internet Media (Formerly MIME) Type Identifiers
The OSF defines the following Internet Media Types [4].

Media Type Extension Description

application/osf-package4 osf Open Score Format package file

application/osf-score-pvg-
profile+xml

osfpvg PVG profile Music XML Score

3 Other compression algorithms are supported by the ZIP standard, but support for these is not universal. The STORE and

DEFLATE are known to be supported by Java, .NET and zlib.
4 Provisional, and unregistered internet media types. Final values to be confirmed.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 15 of 52

3.6 Use of Internationalized Resource Identifiers (IRIs)
References from one file to another in an Open Score Format package are encoded using
relative Internationalized Resource Identifiers (IRIs). [7].

The following restrictions are placed on IRIs used within the package:

• References between files contained within a package MUST:

• Be relative.

• Not reference files outside of the root of the package.

• Absolute references to resources external to the package MAY be used with the
exception of file:// IRIs which MUST NOT be used. This rule is enforced by the
schemas for the container.xml and manifest.xml files.5

3.7 META-INF/container.xml file
The META-INF/container.xml file describes the renditions of the content available in the
package. The W3C XML Schema for this document can be found in Section 7.1.

One of the renditions is the default rendition. It MUST refer to a MusicXML file that is
compatible with one of the Open Score Format Digital Score Application Profiles, and thus
usable by any Open Score Format compliant application.
<container xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.musicxml.org/xsd/container.xsd">
 <rootfiles>
 <rootfile full-path="Default/Score.xml"
 media-type="application/osf-pvg-application-profile"/>
 <rootfile full-path="Enhancement/Enhancement.xml"
 media-type="applicatication/myAppScoreEnhancement"/>
 </rootfiles>
</container>
Figure 2: Example of the description of the packages renditions

Each rendition is specified by a rootfile element that has:

• A full-path attribute that contains an IRI that specifies relative to the package root
the location of root file of the rendition. In the case of the default rendition this will be
a MusicXML file.

• A media-type attribute that indicates the content type of the rendition

The first rootfile element declared is the default rendition. The container.xml file MUST
NOT be encrypted.

3.8 META-INF/manifest.xml file
The META-INF/manifest.xml describes constituent parts of the package. It contains:

• A description of each asset contained in the package

• Descriptions of asset-groups (asset groups are OPTIONAL logical groupings of
assets)

• Digital signature data (OPTIONAL)

• An X.509 public key certificate of the package signer (OPTIONAL).

5 Implementers of applications that process Open Score Format packages must take extreme care to avoid security hazards

associated with fetching documentsʼ raw IRIs. It is recommended that an explicit check for disallowed file:// IRIs is
included.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 16 of 52

The manifest MAY be omitted for simple packages where:

• All content is referenced by the container.xml, and;

• Package signing is not used

The procedure to sign packages and the signature data included in the manifest is described
in §11

3.8.1 Declaration of Assets and Asset-Groups
Asset and asset-groups are declared with asset and asset-group elements respectively.
These are children of an assets element.

<osfm:assets name="ExampleManifest">
 <osfm:asset name="META-INF/Container.xml" media-type="text/xml"
 signed="true" c14n="true"/>
 <osfm:asset name="META-INF/Manifest.xml" media-type="text/xml"
 signed="true" c14n="true"/>
 <osfm:asset name="META-INF/Metadata.xml" media-type="text/xml"
 signed="true" c14n="true"/>
 <!-- default rendition -->
 <osfm:asset name="Default/Score.xml"
 media-type="application/application-osf-score-pvg-profile"
 signed="true" c14n="true"/>
 <!-- altnernate rendition -->
 <osfm:asset name="Alternate/Enhancement.xml"
 media-type="applicatication/myAppScoreEnhancement"
 signed="true" c14n="true"/>
 <osfm:asset name="Image1.png" media-type="image/png" signed="true" c14n="false"/>
 <osfm:asset name="Image2.png" media-type="image/png" signed="true" c14n="false"/>
 <osfm:asset name="Image3.png" media-type="image/png" signed="true" c14n="false"/>
 <osfm:asset name="Image4.png" media-type="image/png" signed="true" c14n="false"/>
 <osfm:asset-group name="AlternateRendition">
 <osfm:asset-reference ref="Alternate/Enhancement.xml"/>
 <osfm:asset-reference ref="Image1.png"/>
 <osfm:asset-reference ref="Image2.png"/>
 <osfm:asset-reference ref="Image3.png"/>
 <osfm:asset-reference ref="Image4.png"/>
 </osfm:asset-group>
</osfm:assets>

Figure 3: Example of an asset and asset-group declaration

Each asset in the package (including the package metadata files container.xml and
manifest.xml and metadata.xml), MUST be declared with an asset element:

 A size attribute that specified the extent of the asset in bytes. (OPTIONAL)6

 A name attribute that contains an IRI indicating the location of the file relative to this
one.

 A mediaType attribute that indicates the content type of the file.

6 The size element is provided to support encryption of assets (the mechanisms for doing so are not defined here). In some

cases where a block cipher is used, the encrypted file included in the package is larger than the original. The size element
allows the original file-size to be recovered.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 17 of 52

 A signed attribute indicates whether the asset should be included in the digital
signature of the package. (OPTIONAL)

 A c14n attribute indicates whether the asset should be canonicalized during digital
signature processing. (OPTIONAL). Refer to §4.3.2.

Assets CANNOT be declared more than once.

An asset-group element MAY be used to declare logical relationships between assets. The
name attribute specifies the unique identifier for the grouping. The Open Score Format
attaches no significance to any particular identifier value, but applications that make use of
alternate renditions MAY do so.

The assets within the asset-group element are declared using an asset-reference child-
element. The ref attribute contains the IRI of an asset, which MUST previously have been
declared with an asset element.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 18 of 52

4. Package Signing

4.1 Introduction
Package signing uses a combination of message digests and digital signatures. It is used to:

• Maintain integrity of the assets and metadata in the package.

• Verify the authenticity of the package and its creator.

Both the message digests for assets and the package signature are included in the META-
INF/manifest.xml file.

manifest.xml

`

<assets>

….

<asset> - Asset 1 Description

Asset N description

Asset 2 Description

<ds:Signature>

<ds:Reference> - Asset 1 Digest

<ds:Reference> - Asset 2 Digest

<ds:Reference> - Asset N Digest

….

<ds:Reference> - <Assets> section Digest

<ds:SignatureValue>

Figure 4: Structure of a signed META-INF/manifest.xml filee

The algorithms and XML data formats for digital signatures specified by The XML Signature
Syntax and Processing Specification (Second Edition) (XML-SIG) [9] are used.

Package signing consists of the following steps:

1. Calculating message digests of each asset, including META-INF/manifest.xml

2. Calculating and enveloping signature over the resulting message digests

The combination of these two steps allows tampering with the package assets and
metadata to be detected.

An example of a META-INF/manifest.xml file containing signatures can be found in §7.4

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 19 of 52

4.2 Keys Used for Signing
The creator or publisher of a package signs it at the time of creation or modification, prior to
distribution to the customer.

The party signing the package requires a public-key encryption key-pair, the public key of
which is signed by a certificate authority in the form of an X.509 public-key certificate.

The X.509 public-key certificate is publicly distributed, optionally in the package itself.

4.3 Inclusion of Signature Data in META-INF/manifest.xml
Package integrity metadata are included in the META-INF/manifest.xml file and consist of
message digests of package assets, and a signature of the manifest itself.

Section 3.8 describes the purpose and contents of the of the non-signature data in the
manifest. The remainder of the data consists of a XML-SIG ds:Signature element
containing all message digests and signatures.

It should be noted that the XML-DSIG specification allows wide choice of algorithms in the
signing process. An OSF-reading application MUST expect any combination permitted by
XML-DSIG.

The following sections describe one possible choice of algorithms in the signing process.7

4.3.1 Inclusion of Message Digests Values for Assets Under a ds:Signature Element
A message digest MAY be included in the manifest for each asset in an Open Score Format
package. The digest allows tampering with the asset to be detected.

It is RECOMMENDED that any asset that has been encrypted is also protected with a
message digest. If the asset is encrypted, the digest MUST be calculated over the encrypted
rather than unencrypted form of the asset.8

The message digest of each asset is described with a ds:Reference element.

<ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="../META-INF/Container.xml">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-ds:Signature"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>2a3Xy5hSLQMumef8YbNwjo/eIEY=</ds:DigestValue>
 </ds:Reference>
Figure 5: Fragment of META-INF/manifest.xml showing message digest for an XML
document using canonicalization.

The URI element of the ds:Reference element contains a IRI that references a package
asset. Refer to §3.6 for further details.

The message digest algorithm used is specified with the Algorithm attribute of the
ds:DigestMethod element. Any algorithm supported by XML-SIG may be used. A value of
http://www.w3.org/2000/09/xmldsig#sha1 is RECOMMENDED.

7 The examples here were generated with the Open Score Format Packaging Toolkit which is implemented using the Microsoft

.NET implementation of XML-DSIG
8 An application that is verifying the signature of the package may not be capable of decrypting the asset.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 20 of 52

4.3.2 Specifying the Signature and Canonicalization Algorithm to be Applied to a ds:Signature
Element

XML-SIG allows a choice of digital signature and canonicalization algorithms.

XML assets can optionally be canonicalized before signing. The process of canonicalization
(C14N) attempts to normalize the content of the document whilst ignoring non-content
differences such as white-space or comments.

It is RECOMMENDED that all XML assets are canonicalized prior to signing. Note that
canonicalization cannot compensate for differences in element or attribute ordering in
documents.9

The choice of algorithms is specified by the ds:CanonicalizationMethod and
ds:SignatureMethod:

<ds:Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
...
...
Figure 6: Fragment of the META-INF/Manifest.xml file showing specification of
canonicalization and signature algorithms

Any algorithm supported by XML-SIG MAY be used. The table below shows those that are
RECOMMENDED:

Name Recommended Algorithm URI

Canonical XML
Version 1.0

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

RSA-SHA1 -
PKCS1- Digital
Signature Algorithm

http://www.w3.org/2000/09/xmldsig#rsa-sha1

Table 3: Recommended algorithms for digital signatures

4.3.3 Inclusion of a Message Digest for META-INF/manifest.xml
A message digest is calculated META-INF/manifest.xml in the same manner as other
assets, with the URI property of the ds:Reference element containing a null path.

The Enveloping Signature Transform must be applied to this operation to exclude the
contents of the ds:Signature element from the digest.

<ds:Reference URI="">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-ds:Signature"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>6jHiD24vvcpBsVyrrQMQgaSs1Zs=</ds:DigestValue>
</ds:Reference>

9 This is a particular concern for MusicXML documents as there are many ways of notating a measure of multi-voice music with

<backup> and <forward> elements which, whilst conveying the same semantics, result in different content models
after canonicalization

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 21 of 52

4.3.4 Signature Value
The signature value is specified using a ds:SignatureValue element. The bytes of the
signature are Base-64 encoded.

<ds:Signature>
 ...

<ds:SignatureValue>KgqGUt7U97Kg4QinaB7KgiL7kBzFnsgLfRbHpQNhrvFpwkUuIq/gQ75klgLNV4n/S
 X9PV5fi7l5RW/sA/p32FAyaPNU2GYWwjTWn53jMwt1maPFKKsWAN4g9W4NPkABZaU
 XHZ6KQnAyFo6wEJ6wXaAHKxLbFyxPSKycoB/lLRk4=
</ds:SignatureValue>
 ...
</ds:Signature>
Figure 7: Fragment from the META-INF/manifest.xml file showing a digital signature
value

4.4 Including a X.509 Certificate in META-INF/manifest.xml
An X.509 certificate bearing the signer’s public key MAY be included in the META-
INF/Manifest.xml file. Doing so is RECOMMENDED when a package is signed, although
other means of key distribution are possible.

The X.509 certificate is base-64 encoded inside a XML-SIG ds:X509Certificate element.
Whilst the XML-SIG ds:KeyInfo element supports other key data formats, only ds:X509Data
SHALL be used.

Similarly, the ds:X509Data element allows beneath it allows various elements that can
describe a certificate (or where one might be obtained). Only ds:X509Certificate SHALL
be supported.

<ds:Signature Id="ManifestSignature">
 <ds:SignedInfo>
 ...
 ...

 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
 Q2VydGlma...........ICA2ODo5Zg==
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
</ds:Signature>
Figure 8: Fragment of META-INF/Manifest.xml showing the inclusion of an X.509 certificate

4.5 Sequence of Operations for Signing a Package
1. Determine which of the assets require protecting by the digital signature (usually the union of

all asset elements in each assets-group whose signed attribute is true, and META-
INF/metadata.xml, META-INF/container.xml).

2. Calculate the message digest for each asset identified in step 1. Populate the
ds:Signature/ds:SignedInfo element in META-INFO/manifest.xml with ds:Reference
elements describing the assets and their digests.

3. Calculate the message digest for META-INFO/manifest.xml using the enveloping signature
transform [see §6.6.4 XML-SIG]

4. Add a ds:KeyInfo element to META-INFO/manifest.xml to hold the X.509 certificate that
contains the public key of the signer [OPTIONAL]

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 22 of 52

5. Apply the digital signature algorithm (and C14N transformation [§6.5.1 XML-SIG] to the
ds:SignedInfo element and all of its contents.

6. Create a ds:SignatureValue element containing the signature value and add it as a child of
ds:Signature.

This section builds on §3.1 (Core Generation) of the XML-SIG specification [9]. It is likely that a
library implementation of XML-SIG will automate most of these steps.

4.6 Validating the Signature on a Package
1. Obtain the X.509 certificate for the signer of the package. If it has been included in the

package it can be extracted from META-INF/metadata.xml with the XPATH expression:
osfm:manifest/ds:Signature/ds:KeyInfo/ds:X509Certificate

2. Recover the digital signature value from the ds:SignatureValue element.

3. Validate the signature on the ds:SignedInfo element, applying the C14N transformation
first.

4. Calculate the message digest for each asset included in a ds:Reference element of the
signed manifest. Compare the calculated digest with that included in the signature.

This section builds on §3.1 (Core Generation) of the XML-SIG specification [9]. It is likely that a
library implementation of XML-SIG will automate most of these steps.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 23 of 52

5. Metadata

5.1 Introduction
The Open Score Format specifies a minimum requirement for package catalogue metadata.
This is called the Open Score Format Base-line metadata profile.

The purpose of the catalogue metadata is to describe the package – its author, title, publisher
and so on. This data may be used in applications that use Open Score Format packages
such as e-commerce or archive systems to build a catalogue.

Rather than develop a complete application specific metadata schema, the Open Score
Format specification has adopted existing standards. In particular the Qualified Dublin Core
from the Dublin Core Metadata Initiative (DMCI) [2] provides a metadata vocabulary and
encoding schemes for much of the catalogue metadata.

This has been augmented by a vocabulary specific to the music publishing domain that
enhances the description of the score, including meter, key and opus number.

5.2 Open Score Format Base-line Metadata Profile
The Open Score Format Base-line Metadata Profile specifies the required, recommended and
optional metadata terms that must be present in the META-INF/metadata.xml file, and the
way in which they must be encoded.

A W3C XML Schema is provided that can be used to validate metadata document instances.
Due to the manner in which the Qualified Dublin Core is designed, the schema cannot
enforce all requirements of the Open Score Format Base-line metadata profile; the Open
Score Format package validation tool does however provide this higher-level validation. Refer
to §6 for further details.

Open Score Format applications SHOULD at a minimum validate META-INF/metadata.xml
files against the schema.

5.3 Design Objectives
The design of the metadata representation in Open Score Format aims to strike a balance
between providing a rigid definition and one that is fully flexible.

Using the Dublin Core vocabulary rather than defining another one specific to this application
is beneficial in that the Dublin Core is already widely employed as the data format for
catalogue metadata in digital and physical goods. Using the same vocabulary and encoding
schemes allows straightforward interoperability of metadata.

By default, the Dublin Core provides a highly permissive definition of metadata – both in
terms of structure and encoding schemes. This is advantageous to those applying the Dublin
Core to a wide range of digital resources, but disadvantageous to software developers who
develop tools that process the resulting data.

To avoid undue complexity in tools that read or write Open Score Format packages, the Open
Score Format Base-line Metadata Profile imposes additional constraints on the cardinality of
Dublin Core terms, and their encoding schemes. Furthermore, a set of recommendations is
provided below for mapping of Dublin Core metadata vocabulary into the music-publishing
domain.

Consideration was given to using the Resource Description Framework [5] in conjunction with
Dublin Core. This was rejected on grounds of complexity. The design of the Open Score
Format Base-line metadata profile has been undertaken with the consideration that
applications might want to transcode to and from RDF triples. Implementing transcoding into
RDF triples is believed to be straightforward.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 24 of 52

5.4 The META-INF/metadata.xml file
The META-INF/metadata.xml contains metadata for the package and default rendition. The
file contains an osf-package-metadata-baseline root element containing a number of child
elements:

• Elements defined by the Dublin Core (the Dublin Core metadata ‘terms’). Refer to
§5.5 for further details.

• Elements defined in the osfmeta namespace that define metadata specific to the
music publishing domain. Refer to §5.8 for further details.

• An osf-meta-app-ext-metadata element for adding application specific metadata.
Refer to §5.9 for further details.

<osfmeta:osf-package-metadata-baseline xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="http://openscoreformat.sourceforge.net/osf/metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osfmeta="http://openscoreformat.sourceforge.net/osf/metadata"
 xsi:schemaLocation="http://openscoreformat.sourceforge.net/osf/metadata
 http://openscoreformat.sourceforge.net/1.0/metadata.xsd">

 <dc:title xml:lang="fr">Marche Slave</dc:title>
 <dc:title xml:lang="de">Marsche Slawonisch</dc:title>
 <dc:title xml:lang="en">Slavonic March</dc:title>
 <dcterms:alternative>A slvanic march</dcterms:alternative>
 <dc:creator>Pyotr Ilyich Tchaikovsky</dc:creator>
 <dc:description>Piano Solo</dc:description>
 <dc:publisher>Music Sales</dc:publisher>
 <dcterms:created xsi:type="dcterms:W3CDTF">1876</dcterms:created>
 <dcterms:issued xsi:type="dcterms:W3CDTF">2008-03-12</dcterms:issued>
 <dcterms:modified xsi:type="dcterms:W3CDTF">2008-03-12</dcterms:modified>
 <dc:type xsi:type="dcterms:DCMIType">InteractiveResource</dc:type>
 <dcterms:medium xsi:type="dcterms:IMT">osfpvg</dcterms:medium>
 <dc:identifier xsi:type="dcterms:URI">
 http://openscoreformat.sourceforge.net/OSF/Content/0123456789
 </dc:identifier>
 <dcterms:source xsi:type="dcterms:URI">
 http://openscoreformat.sourceforge.net/
 </dcterms:source>
 <dc:language xsi:type="dcterms:RFC4646">en</dc:language>
 <dc:rights>(C) Some company 2008</dc:rights>
 <osfmeta:meter>
 <osfmeta:beats>4</osfmeta:beats>
 <osfmeta:beat-type>4</osfmeta:beat-type>
 </osfmeta:meter>
 <osfmeta:opus>31</osfmeta:opus>
 <osfmeta:key>
 <root>B</root>
 <accidental>flat</accidental>
 <mode>minor</mode>
 </osfmeta:key>
</osfmeta:osf-package-metadata-baseline>
Figure 9: Example META-INF/metadata.xml file

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 25 of 52

5.5 Metadata Encodings

5.5.1 Introduction
This section describes the way in which metadata is encoded using the Dublin Core
elements, and provides recommendations for the way in which these map onto the concepts
and terminology of the music publishing domain. These recommendations are based on
those in the Dublin Core User Guide [20].

5.5.2 Specifying Element Encodings
The Open Score Format Base-line Metadata Profile enforces the use of content encodings for
Dublin Core elements. This is a restriction of the content of the inner-XML of the element.

Refer to Table 6: Use of Qualified Dublin Core elements for a complete description of
encodings for particular Dublin Core elements.

In a metadata instance document, the encoding type is specified by using an xsi:type
attribute on any Dublin Core element:

<dc:identifier xsi:type="dcterms:URI">
http://www.yamaha.com/OSF/Content/0123456789
</dc:identifier>
Figure 10: Use of a dc:identifier element

The use of encodings is not enforceable by the Open Score Format Base-line Metadata
Profile schema. Use the Open Score Format validation tool instead.

5.5.3 Uniform Resource Identifiers
Uniform Resource Identifiers [7] (URIs) are often used in metadata fields that declare or
reference a unique resource (for instance single item of content or a content delivery or
rendering platform).

Any valid and unique URI may be used. It is the responsibility of the content publishers to
allocate unique identifiers and chose an encoding scheme.

The following encoding schemes are RECOMMENDED:

• Uniform Resource Locators (URLs)

• Uniform Resource Names (URNs)

5.5.3.1 Uniform Resource Locators
A uniform resource locator (URL) indicates the location at which a resource can be found and
retrieved.

There is no strict requirement that a URL used to describe a resource is retrievable from the
location indicated – only that the URL is unique - although in the case of a score download
service being able to retrieve the content (or redirecting to a location from which it is possible)
is beneficial.

5.5.3.2 Uniform Resource Names
Uniform Resource Names [15] (URNs) are a sub-class of URIs intended to be used to encode
location independent, persistent, resource identifiers.

Further refinements to the encoding scheme exist for encoding classes of existing identifiers
such as ISBNs [16] and Universally Unique Identifiers10 (UUIDs) [17].

The use of ISBNs may be of interest to publishers who also publish physical goods and chose
to also allocate ISBNs to their electronic goods. They can also be used to reference physical
goods carrying an ISBN.

10 Globally Unique Identifiers (GUIDs) are an implementation of UUIDs and can be used interchangeably.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 26 of 52

5.5.3.3 Example Identifiers and Encodings
Identifier Encoding

ISBN:
978-0307266934

URN-
ISBN

URN:ISBN:978-0307266934

UUID:
67BB75A1-964E-4073-
989F-E68DBEE84D68

URN-
UUID

URN:UUID:67BB75A1-964E-4073-989F-E68DBEE84D68

Arbitrary identifier:
1234567890

URL http://www.ascoredownloadservice.com/openscorefo
rmat/content/1234567890

Table 4: Table showing the ways in which a number of different identifier classes can
be encoded as a URI

5.5.4 W3C Time and Date Format
The W3C Time and Date Format allows time to be specified at varying levels of precision.
Further details can be found in Date and Time Formats [18].

Precision Example

Year 1997

Year and month 1997-07

Complete date 1997-07-16

Complete date plus hours and minutes 1997-07-16T19:20+01:00

Complete date plus hours, minutes and
seconds

1997-07-16T19:20:30+01:00

Complete date plus hours, minutes,
seconds and decimal fraction of a
second

1997-07-16T19:20:30.45+01:00

Figure 11: Examples of times and dates at different degrees of precision

5.5.5 DCMI Period
The DCMI period is an encoding scheme for a time interval. Refer to [19] for further details.

5.6 Language Variants
Elements without a content encoding specified have the type xs:string. The language of
content of the element can be specified using an xml:lang attribute with a RFC4646 [14]
language identifier.

Most Dublin Core elements can appear multiple times in an instance document to support
language variants:

<dc:title xml:lang="fr">Marche Slave</dc:title>
<dc:title xml:lang="de">Marcshe Slawonisch</dc:title>
<dc:title xml:lang="en">Slavonic March</dc:title>
Figure 12: Example of repeated Dublin core elements used to support language
variants.

5.7 Recommended use of Dublin Core Metadata Terms

5.7.1 dc:title
Describes the title of the content. May appear multiple times to support language variants.

Alternative titles should be encoded using the dcterms:alternative element instead.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 27 of 52

5.7.2 dc:creator
Describes the creator(s) of the content. This may include the name of a person, organisation
or service. Multiple elements may appear to describe:

• Composer(s)

• Transcribers(s)

• Arranger(s)

The order of multiple elements may be used to imply precedence. It is RECOMMENDED
that one dc:creator element appears per creator.

Personal names should appear with the family name first followed by given name:

<dc:creator>Pyotr Ilyich Tchaikovsky</dc:creator>
Figure 13: Recommended encoding of a personal name.

5.7.3 dc:description
A description of the content. This element may be used for a number of purposes:

• The type of work: e.g. Piano Solo, Song, String Quartet, Concerto etc.

• The structure of the work: e.g. sonata form, fugue, march, song-form, variation and
theme etc.

• Intended purpose of work: e.g. religious work, military march, dance etc.

Where a work is comprised as several distinct sections, a dcterms:tableOfContents
element should be used to describe each one.

5.7.4 dc:publisher
The name of the publisher.

5.7.5 dc:created
The date at which the package was first created in W3C Time and Date format.

5.7.6 dc:issued (OPTIONAL)
The date at which the package was formally issued – perhaps before which release is
embargoed.

5.7.7 dc:modified
The date at which the package was last modified.

5.7.8 dc:valid
The date (or range of dates) during which the package is valid.

5.7.9 dc:dateCopyrighted
The copyright statement date.

5.7.10 dc:type
The type of the work encoded using the DCMI Type vocabulary. A value of
InteractiveResource is recommended:

<dc:type xsi:type="dcterms:DCMIType">InteractiveResource</dc:type>
Figure 14: Use of the dc:type element

5.7.11 dcterms:medium
The Internet Media Type (MIME type) of the work – e.g. osfpvg or osf .

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 28 of 52

5.7.12 dc:identifier
A unique identifier for the content encoded as a URI. See §5.5.3.

5.7.13 dc:source
An identifier of a resource from which the work is derived. For example, the original edition if
this one is an arrangement.

5.7.14 dc:language
The language(s) of the content, encoded using RFC1766 [14]. Use multiple dc:language
elements if multiple language variants are provided by the content.

5.7.15 dc:relation
Describes the relationship of the resource to others. The Qualified Dublin Core provides
qualified terms that allow more precise relationships to be described. These SHOULD be
used in preference to dc:relation.

All are encoded as URIs.

Qualified Dublin Core Relation
Term

Use

dc:isVersionOf Resource is a version of another by the same
creator.

dc:hasVersion Resource has other versions by the same creator.

dc:isReplacedBy Resource is superseded by another.

dc:replaces Resource is a replacement for another.

dc:isRequiredBy Resource is required by another in order for it to be
useful.

dc:requires Resource requires another resource to be useful.

dc:isBasedOn Resource is derivative work of another, such as an
arrangement.

dc:isBasisOf Resource has derivative works, e.g. arrangements.

 Table 5: Qualified Dublin Core Terms that can be used in place of dc:relation.

5.7.16 dc:rights
Contains a rights management statement for the resource. This could include a URL that
refers to a license agreement or a statement that a digital rights management in force.

5.8 Use of OSF Metadata Terms

5.8.1 osfmeta:meter
Used to describe meter(s) or time signature(s) of the resource.When multiple significant
meters are present in a work, multiple osfmeta:meter elements may appear in order of
significance (rather than occurrence).

<osfmeta:meter>
<osfmeta:beats>4</osfmeta:beats>

 <osfmeta:beat-type>4</osfmeta:beat-type>
</osfmeta:meter>
Figure 15: Example of osfmeta:meter element to describe the meter(s) of a resource.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 29 of 52

5.8.2 osfmeta:key
Used to describe the significant key signature of the resource. When the resource has
multiple significant key signatures, multiple osfmeta:key elements may appear in order of
significance (rather than occurrence).

<osfmeta:key>
 <osfmeta:root>B</osfmeta:root>
 <osfmeta:accidental>flat</osfmeta:accidental>
 <osfmeta:mode>minor</osfmeta:mode>
</osfmeta:key>
Figure 16: Use of osfmeta:key element to describe key signature(s) or a resource.

Possible values for osfmeta:key are A, B , C, D, E, F, G and none11.

Possible values for the osfmeta:accidental element are: sharp and flat. The element
may be omitted for natural keys.

Possible values for the osfmeta:mode element are: minor, major, dorian, phrygian,
lydian, mixolydian, aeolian, ionian, locrian, none12

5.8.3 osfmeta:work-number
Used to describe the work (e.g. opus number) of a resource, if present.

5.9 Addition of Application-specific Metadata to META-INF/metadata.xml
Application specification metadata can be incorporated into META-INF/metadata.xml using
the substitution group mechanism provided by W3C XML Schema.

The schema for metadata.xml provides an empty placeholder element - osfmeta:app-ext-
metadata - under the osf-package-metadata-baseline element, that may appear multiple
times in an instance document.

An application can use a W3C XML Schema to define complex types that represent their data
with the substitutionGroup=”osfmeta:app-ext-metadata” attribute. These can be used
instead of the osfmeta:app-ext-metadata placeholder element in an instance document.

5.9.1 Example of an application-specific data schema
<?xml version="1.0" encoding="UTF-8"?>
<osfmeta:osf-package-metadata-baseline

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns="http://openscoreformat.sourceforge.net/osf/metadata"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osfmeta="http://openscoreformat.sourceforge.net/osf/metadata"
xmlns:exampleApp="http://openscoreformat.sourceforge.net/exampleApp/"
xsi:schemaLocation="http://openscoreformat.sourceforge.net/exampleApp/

 http://openscoreformat.sourceforge.net/1.0/exampleDerivedSchema.xsd">

<dc:title xml:lang="fr">Marche Slave</dc:title>
 ...

 <exampleApp:exampleAppExtension>
 <exampleApp:appData1>foo</exampleApp:appData1>

11 Used for scores in unconventional keys, those that are atonal or where the composer or engraver has chosen to omit the

key-signature and use accidentals throughout
12 Used for scores without an obvious mode.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 30 of 52

 <exampleApp:appData2>bar</exampleApp:appData2>
 <exampleApp:appData3>barred</exampleApp:appData3>
 </exampleApp:exampleAppExtension>
Figure 17: Example of a schema for defining application-specific data extensions.

<?xml version="1.0" encoding="UTF-8"?>
<osfmeta:osf-package-metadata-baseline

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns="http://openscoreformat.sourceforge.net/osf/metadata"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osfmeta="http://openscoreformat.sourceforge.net/osf/metadata"
 xmlns:exampleApp="http://openscoreformat.sourceforge.net/exampleApp/"
 xsi:schemaLocation="http://openscoreformat.sourceforge.net/exampleApp/
 http://openscoreformat.sourceforge.net/1.0/exampleDerivedSchema.xsd">
 <dc:title xml:lang="fr">Marche Slave</dc:title>
 ...

 <exampleApp:exampleAppExtension>
 <exampleApp:appData1>foo</exampleApp:appData1>
 <exampleApp:appData2>bar</exampleApp:appData2>
 <exampleApp:appData3>barred</exampleApp:appData3>
 </exampleApp:exampleAppExtension>
Figure 18: Example of META-INF/metadata.xml containing application-specific data.

© Copyright 2008-2009 YAMAHA CORPORATION
All rights reserved

Page 31 of 52

6. Open Score Format Packaging Tool
The Open Score Format Packaging Tool can be used to check validity of an Open Score
Format Package. The checks are relevant to packaging and metadata:

• Validating all XML files against their respective schemas.

• Ensuring that all referenced files exist.

• Ensuring that incompatible features of the ZIP compression format are not used (See
§3.3.2).

• Enforcing use of content encodings for metadata elements (See §5.5.2).

Documentation for the tool can be found on the OpenScoreFormat Project Site at
http://openscoreformat.sourceforge.net/

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 32 of 52

7. Appendix

7.1 META-INF/container.xml W3C XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:annotation>
 <xs:documentation>Open Score Format

Version 1.0 – 11 September 2009

Copyright © 2004-2009 Recordare LLC.
http://www.recordare.com/

This MusicXML™ work is being provided by the copyright holder under the MusicXML Document Type
Definition Public License Version 2.0, available from:

 http://www.recordare.com/dtds/license.html

Starting with Version 2.0, the MusicXML format includes a standard zip compressed version. These
zip files can contain multiple MusicXML files as well as other media files for images and sound.
The container schema describes the contents of the META-INF/container.xml file. The container describes
the starting point for the MusicXML version of the file, as well as alternate renditions such as PDF and
audio versions of the musical score.

The MusicXML 2.0 zip file format is compatible with the zip format used by the java.util.zip package and
Java JAR files. It is based on the Info-ZIP format described at:

 ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip

The JAR file format is specified at:

 http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html

Note that, compatible with JAR files, file names should be encoded in UTF-8 format.

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 33 of 52

Files with the zip container are compressed the DEFLATE algorithm. The DEFLATE Compressed Data Format
(RFC 1951) is specified at:

 http://www.ietf.org/rfc/rfc1951.txt

The recommended file suffix for OSF files is .osf. The recommended media type for an Open Score Format
package file is:

 application/vnd.yamaha.openscoreformat

The recommended media type for an OSF PVG profile MusicXML score is:

 application/vnd.yamaha.openscoreformat.osfpvg+xml

Open Score Format specifies additional constraints on container files than does MusicXML 2.0. See the
Open Score Format Packaging Specification for further details.

Open Score Format uses XSD for all its XML format definitions. This container.xsd file is an XSD version
of MusicXML 2.0's container.dtd file.
 </xs:documentation>
 </xs:annotation>
 <xs:element name="container">
 <xs:annotation>
 <xs:documentation>Container is the document element. </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="rootfiles">
 <xs:annotation>
 <xs:documentation>
 Rootfiles include the starting points for the different representations of a
 MusicXML score. The MusicXML root must be described in the first rootfile element.
 Additional rootfile elements can describe alternate versions such as PDF and audio files.
 </xs:documentation>
 </xs:annotation>

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 34 of 52

 <xs:complexType>
 <xs:sequence>
 <xs:element name="rootfile" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 The rootfile element describes each top-level file in the MusicXML container.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="full-path" type="xs:anyURI">
 <xs:annotation>
 <xs:documentation>
 The full-path attribute provides the path relative to the root folder of the
 zip file. It is an IRI as defined in RFC3987.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="media-type" type="xs:anyURI">
 <xs:annotation>
 <xs:documentation>
 The media-type identifies the type of different top-level root files. It is an
 Internet Media Type (MIME-Type) as defined by RFC2046. It is an error to have a
 non-MusicXML media-type value in the first rootfile in a rootfiles element. If no
 media-type value is present, a MusicXML file is assumed. A MusicXML file used as a
 rootfile may have score-partwise, score-timewise, or opus as its document element.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 35 of 52

</xs:schema>

7.2 META-INF/manifest.xml W3C XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<!--
* Version: 1.0, 3/7/09
*
* Copyright © 2009 Yamaha Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY YAMAHA CORPORATION ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL YAMAHA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:osfm="http://openscoreformat.sourceforge.net/osf/manifest"

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 36 of 52

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 targetNamespace="http://openscoreformat.sourceforge.net/osf/manifest"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#"
 schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/>
 <xs:element name="manifest">
 <xs:annotation>
 <xs:documentation>
Manifest for an OSF Package. The manifest records information for each file in the
package besides container.xml and manifest.xml, such as location, format type and
data associated with any (optional) signature for the package and its assets.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="assets">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="asset" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:anyURI" use="required">
 <xs:annotation>
 <xs:documentation>
 IRI (as defined in RFC3987) of the file relative to the root of the package
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="media-type" type="xs:anyURI" use="required">
 <xs:annotation>
 <xs:documentation>
 Internet Media Type (MIME-Type) as defined by RFC2046
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="size" type="xs:integer" use="optional">

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 37 of 52

 <xs:annotation>
 <xs:documentation>
 Size of file (optional). Used when files are encrypted with a block cypher
 And padded may have needed to have been applied.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="Id" type="xs:ID"/>
 <xs:attribute name="signed" type="xs:boolean" use="optional">
 <xs:annotation>
 <xs:documentation>
 The asset should be included in the digital signature for the package.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="c14n" type="xs:boolean" use="optional">
 <xs:annotation>
 <xs:documentation>
 The asset should be canonicalized before signing.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="asset-group" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 A group of assets in the package. Typically a group of assets share a bulk
 encyption key, are processed together by the security tool. An asset can only
 ever belong in one asset group
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="asset-reference">

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 38 of 52

 <xs:complexType>
 <xs:attribute name="ref" type="xs:anyURI" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:anyURI" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:anyURI" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element ref="ds:KeyInfo" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Public key used to sign package. Beneath here should be a X509Data element containing
 an BASE64 encoded X.509 certicate bearing the key. Whilst the schema can't apply this
 limitation, the OSF validation tool probably will.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="ds:Signature" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 XML-SIG signature of and asset digests
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <!-- cross reference and key uniqueness tests -->
 <xs:key name="asset">
 <xs:annotation>
 <xs:documentation>
 Enforce unique asset names.

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 39 of 52

 </xs:documentation>
 </xs:annotation>
 <xs:selector xpath="osfm:assets/osfm:asset"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="asset-group-name">
 <xs:annotation>
 <xs:documentation>
 Enforce unique asset-group names.
 </xs:documentation>
 </xs:annotation>
 <xs:selector xpath="osfm:assets/osfm:asset-group"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:keyref name="asset-group" refer="osfm:asset">
 <xs:annotation>
 <xs:documentation>
 Ensure that asset-ref corresponds to asset
 </xs:documentation>
 </xs:annotation>
 <xs:selector xpath="osfm:assets/osfm:asset-group/osfm:asset-reference"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:unique name="asseet-reference">
 <xs:annotation>
 <xs:documentation>
 Assets can only be referenced in one asset group
 </xs:documentation>
 </xs:annotation>
 <xs:selector xpath="osfm:assets/osfm:asset-group/osfm:asset-reference"/>
 <xs:field xpath="@ref"/>
 </xs:unique>
 <!-- cross references checks between things in the manifest that can be signed and references to them -->
 <xs:key name="signable-object">
 <xs:annotation>

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 40 of 52

 <xs:documentation>
 Any object to which a digital signature can be applied (see xs:signature element).
 This contains assets and the assets element
 </xs:documentation>
 </xs:annotation>
 <xs:selector xpath="osfm:assets/osfm:asset|osfm:assets"/>
 <xs:field xpath="@name"/>
 </xs:key>
 </xs:element>
</xs:schema>

7.3 META-INF/metadata.xml W3C XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<!--
* Version 1.0 3/7/09
* Copyright © 2009 Yamaha Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Yamaha Corporation nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY YAMAHA CORPORATION ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL YAMAHA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 41 of 52

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:osfmeta="http://openscoreformat.sourceforge.net/osf/metadata"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 targetNamespace="http://openscoreformat.sourceforge.net/osf/metadata"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://purl.org/dc/terms/"
 schemaLocation="http://dublincore.org/schemas/xmls/qdc/dcterms.xsd"/>
 <xs:import namespace="http://purl.org/dc/elements/1.1/"
 schemaLocation="http://dublincore.org/schemas/xmls/qdc/dc.xsd"/>
 <xs:element name="app-ext-metadata" abstract="true"/>
 <xs:annotation>
 <xs:documentation>Abstract placeholder element to application-specific metadata extensions</xs:documentation>
 </xs:annotation>
 <xs:complexType name="meter-type">
 <xs:annotation>
 <xs:documentation>
 Meter (eg. time signature). Expressed as beats (eg. numerator, or number of beats per measure) and beat
 type (denominator)
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="beats" type="xs:string">
 <xs:annotation>
 <xs:documentation>Number of beats in each measure</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="beat-type" type="xs:string">
 <xs:annotation>
 <xs:documentation>Type of beat 4 = quarter, 8 = 8th -note etc.</xs:documentation>

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 42 of 52

 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="opus-type">
 <xs:annotation>
 <xs:documentation>Opus number of a work</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 <xs:complexType name="key-type">
 <xs:annotation>
 <xs:documentation>Key signature of work</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="root">
 <xs:annotation>
 <xs:documentation>
 Root key of key signature. If work is atonal or has no obvious key-centre, select 'none'
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="C"/>
 <xs:enumeration value="D"/>
 <xs:enumeration value="E"/>
 <xs:enumeration value="F"/>
 <xs:enumeration value="G"/>
 <xs:enumeration value="A"/>
 <xs:enumeration value="B"/>
 <xs:enumeration value="none"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="accidental" minOccurs="0">

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 43 of 52

 <xs:annotation>
 <xs:documentation>
 Accidentals applied to root key of key signature. Omit if key is natura
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="sharp"/>
 <xs:enumeration value="flat"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="mode">
 <xs:annotation>
 <xs:documentation>Diatonic mode of key signature</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="minor"/>
 <xs:enumeration value="major"/>
 <xs:enumeration value="dorian"/>
 <xs:enumeration value="phrygian"/>
 <xs:enumeration value="lydian"/>
 <xs:enumeration value="mixolydian"/>
 <xs:enumeration value="aeolian"/>
 <xs:enumeration value="ionian"/>
 <xs:enumeration value="locrian"/>
 <xs:enumeration value="none"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="osf-package-metadata-baseline">
 <xs:annotation>

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 44 of 52

 <xs:documentation>Container of metadata terms</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="dc:title" maxOccurs="unbounded"/>
 <xs:element ref="dc:creator" maxOccurs="unbounded"/>
 <xs:element ref="dc:description" maxOccurs="unbounded"/>
 <xs:element ref="dc:publisher" maxOccurs="unbounded"/>
 <xs:element ref="dc:date" maxOccurs="unbounded"/>
 <xs:element ref="dc:type"/>
 <xs:element ref="dc:format" maxOccurs="unbounded"/>
 <xs:element ref="dc:identifier"/>
 <xs:element ref="dc:source"/>
 <xs:element ref="dc:language" maxOccurs="unbounded"/>
 <xs:element ref="dc:relation" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="dcterms:audience" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="dcterms:coverage" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="dc:rights" maxOccurs="unbounded"/>
 <xs:element ref="dcterms:mediator" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="meter" type="osfmeta:meter-type" maxOccurs="unbounded"/>
 <xs:element name="opus" type="osfmeta:opus-type" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="key" type="osfmeta:key-type" maxOccurs="unbounded"/>
 <xs:element ref="osfmeta:app-ext-metadata" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

7.4 Example META-INF/manifest.xml with a digital signature
<?xml version="1.0" encoding="UTF-8"?>
<!--
* Copyright (c) 2008-2009 Yamaha Corporation
* All rights reserved.

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 45 of 52

*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY YAMAHA CORPORATION ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL YAMAHA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-->
<!-- OSF Example Package - Manifest.xml. Note that all package files are listed including the manifest itself.
 This package contains two renditions - the default and an alternate (application specific) one.
-->
<osfm:manifest xmlns:osfm="http://openscoreformat.sourceforge.net/osf/manifest"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="http://openscoreformat.sourceforge.net/osf/manifest
 http://openscoreformat.sourceforge.net/1.0/manifest.xsd">
 <!-- Package metadata -->
 <osfm:assets name="ExampleManifest">
 <osfm:asset name="META-INF/Container.xml" media-type="text/xml" signed="true" c14n="true"/>
 <osfm:asset name="META-INF/Manifest.xml" media-type="text/xml" signed="true" c14n="true"/>

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 46 of 52

 <osfm:asset name="META-INF/Metadata.xml" media-type="text/xml" signed="true" c14n="true"/>
 <!-- default rendition -->
 <osfm:asset name="Default/Score.xml" media-type="application/application-osf-score-pvg-profile"
 signed="true" c14n="true"/>
 <!-- altnernate rendition -->
 <osfm:asset name="Alternate/Enhancement.xml" media-type="applicatication/myAppScoreEnhancement"
 signed="true" c14n="true"/>
 <osfm:asset name="Image1.png" media-type="image/png" signed="true" c14n="false"/>
 <osfm:asset name="Image2.png" media-type="image/png" signed="true" c14n="false"/>
 <osfm:asset name="Image3.png" media-type="image/png" signed="true" c14n="false"/>
 <osfm:asset name="Image4.png" media-type="image/png" signed="true" c14n="false"/>
 <osfm:asset-group name="AlternateRendition">
 <osfm:asset-reference ref="Alternate/Enhancement.xml"/>
 <osfm:asset-reference ref="Image1.png"/>
 <osfm:asset-reference ref="Image2.png"/>
 <osfm:asset-reference ref="Image3.png"/>
 <osfm:asset-reference ref="Image4.png"/>
 </osfm:asset-group>
 </osfm:assets>
 <ds:Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="../META-INF/Container.xml">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-ds:Signature"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>2a3Xy5hSLQMumef8YbNwjo/eIEY=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="../META-INF/Manifest.xml">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-ds:Signature"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 47 of 52

 <ds:DigestValue>wWhTFSOTE/c4Q2vUGG4QgU3oX0k=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="../META-INF/Metadata.xml">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-ds:Signature"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>wiHrbeC6b6aOCc1E5S4y+DO/hUg=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="../Default/Score.xml">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-ds:Signature"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>Vby11ZAi/KwtA57x1dhwVgk+DL8=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="../Alternate/Enhancement.xml">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-ds:Signature"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>Vby11ZAi/KwtA57x1dhwVgk+DL8=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="../Image1.png">
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>wDlUs4ZbwrzwTzdd3mxj5fyLKC8=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="../Image2.png">
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>Pk9ZVSbpn8olwaM8UElhEdko5Mk=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="../Image3.png">
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>4c/B4wfPkwCIIAT2CJeUO+d4UmY=</ds:DigestValue>
 </ds:Reference>

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 48 of 52

 <ds:Reference URI="../Image4.png">
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>CKo7sW5fXRNJWDVHdb5oK/CRt90=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-ds:Signature"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>6jHiD24vvcpBsVyrrQMQgaSs1Zs=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 KgqGUt7U97Kg4QinaB7KgiL7kBzFnsgLfRbHpQNhrvFpwkUuIq/gQ75klgLNV4n/SX9PV5fi7l5RW/sA/p32FAyaPNU2GYWwj
 TWn53jMwt1maPFKKsWAN4g9W4NPkABZaUXHZ6KQnAyFo6wEJ6wXaAHKxLbFyxPSKycoB/lLRk4=
 </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
 MIICpDCCAg2gAwIBAgIJALl19pxX6z+bMA0GCSqGSIb3DQEBBQUAMEExCzAJBgNVBAYTAlVLMRAwDgYDVQQIEwdFbmdsYW
 5kMQ8wDQYDVQQHEwZMb25kb24xDzANBgNVBAoTBllhbWFoYTAeFw0wODExMTAxMDU2MTRaFw0xMTExMTAxMDU2MTRaMEEx
 CzAJBgNVBAYTAlVLMRAwDgYDVQQIEwdFbmdsYW5kMQ8wDQYDVQQHEwZMb25kb24xDzANBgNVBAoTBllhbWFoYTCBnzANBg
 kqhkiG9w0BAQEFAAOBjQAwgYkCgYEAv+9tcj7Msu0H3b9qLiYmQb4gG2pzBj5BmNxZYO1jvC43OmxcZsHwSAXMqXvVeBuC
 0rt9i2I9zE7fu/oDtx/SdPxh8aZqS5QR90Ue9jkTj/zboq85a8eUf0GuEKFV2D1fTkmlfjuzcKq1t1pPNpyEZwVvozSfE5
 Va3jMHtAy2ubcCAwEAAaOBozCBoDAdBgNVHQ4EFgQU4mk2V/t9rdLcT4add1ndctlI9tkwcQYDVR0jBGowaIAU4mk2V/t9
 rdLcT4add1ndctlI9tmhRaRDMEExCzAJBgNVBAYTAlVLMRAwDgYDVQQIEwdFbmdsYW5kMQ8wDQYDVQQHEwZMb25kb24xDz
 ANBgNVBAoTBllhbWFoYYIJALl19pxX6z+bMAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEFBQADgYEADbQJ5BUT7BHpa4ND
 j3Uv9n+rF6FD5rSZnTxIvVs9V2tyqweA3UXgRPGKEYhHO7ZUoBBR4LJxRBRdYh3zZlrQkxduSaF3ghmY4V6o9080h3kFjs
 a5N2k1vcCljezck0n0Ru4JH0Lbtj0XXjKJMtUnT9a/hRVPxAtOzLRzNlPsFJ8=
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
</osfm:manifest>

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 49 of 52

7.5 Open Score Format Base-line Metadata Profile Dublin Core Element requirement levels
The table below specifies the Dublin Core metadata terms that should be present in META-INF/metadata.xml.

Terms in the Element Refinement column are defined in the Qualified Dublin Core, and in many cases enhance the meaning of terms from the Simple
Dublin Core (Dublin Core Element column). Both Simple Dublin Core Elements and Qualified Dublin Core Elements may appear in the META-
INFO/metadata.xml. Refer to The Dublin Core Metadata Initiative: Using the Dublin Core – The Elements [20] for further details.

The OSF Baseline Metadata Profile requires certain metadata terms to be present as described in the table below. Other terms are marked as NOT
RECOMMENDED because their meaning is ambiguous or because an element refinement from the Qualified Dublin Core provides clearer meaning.

Dublin Core Element Element Refinement13 Element Encoding
Scheme

Requirement Level

- Required dc:title

dcterms:alternative

Any

Optional

dc:creator - Any Required

- Required

dcterms:tableOfContents Recommended

dc:description

dcterms:abstract

Any

Optional

dc:publisher - Any Required

dc:contributor - Any Optional

-- Not recommended

dcterms:created Required

dcterms:valid Optional

dcterms:available Optional

dc:date

dcterms:issued

W3C DTF

DCMI Period

Required

13 Element refinements are elements that convey extended semantics that can be used in place of a Dublin Core element.

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 50 of 52

dcterms:modified Required

dcterms:dateCopyrighted

Required

dc:type - DCMI Type vocabulary14 Required

- Any Not recommended

dcterms:extent Any Optional

dc:format

dcterms:medium IMT [4] Required

dc:identifier - URI Required

dc:source - URI Required

dc:language - RFC4646 [14] Required

- Not recommended

dcterms:isVersionOf Recommended

dcterms:hasVersion Recommended

dcterms:isReplacedBy Recommended

dcterms:replaces Recommended

dcterms:isRequiredBy Optional

dcterms::requires Optional

dcterms:isPartOf Recommended

dcterms:hasPart Recommended

dcterms:isReferencedBy Recommended

dcterms:references Recommended

dcterms:isFormatOf Optional

dc:relation

dcterms:hasFormat

URI

Optional

14 The most appropriate type from the DCMI vocabulary is InteractiveResource - http://purl.org/dc/dcmitype/InteractiveResource

Copyright © 2008-2009 Yamaha Corporation, All rights reserved

Page 51 of 52

dcterms:isBasisOf Optional

dcterms:isBasedOn

Optional

- Any Optional

dcterms:spatial Any Optional

dc:coverage

dcterms:temporal W3C-DTF

DCMI Period

Recommended

- Any Optional

dcterms:mediator URI Optional

dc:audience

dcterms:educationLevel Any Optional

dc:rights - Any Optional

Table 6: Use of Qualified Dublin Core elements

